Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT We present new H i interferometric observations of the gas-rich ultra-diffuse galaxy AGC 114905, which previous work, based on low-resolution data, identified as an outlier of the baryonic Tully–Fisher relation. The new observations, at a spatial resolution ∼2.5 times higher than before, reveal a regular H i disc rotating at about 23 km s−1. Our kinematic parameters, recovered with a robust 3D kinematic modelling fitting technique, show that the flat part of the rotation curve is reached. Intriguingly, the rotation curve can be explained almost entirely by the baryonic mass distribution alone. We show that a standard cold dark matter halo that follows the concentration–halo mass relation fails to reproduce the amplitude of the rotation curve by a large margin. Only a halo with an extremely (and arguably unfeasible) low concentration reaches agreement with the data. We also find that the rotation curve of AGC 114905 deviates strongly from the predictions of modified Newtonian dynamics. The inclination of the galaxy, which is measured independently from our modelling, remains the largest uncertainty in our analysis, but the associated errors are not large enough to reconcile the galaxy with the expectations of cold dark matter or modified Newtonian dynamics.more » « less
-
ABSTRACT We study the gas kinematics of a sample of six isolated gas-rich low surface brightness galaxies, of the class called ultra-diffuse galaxies (UDGs). These galaxies have recently been shown to be outliers from the baryonic Tully–Fisher relation (BTFR), as they rotate much slower than expected given their baryonic mass, and to have a baryon fraction similar to the cosmological mean. By means of a 3D kinematic modelling fitting technique, we show that the H i in our UDGs is distributed in ‘thin’ regularly rotating discs and we determine their rotation velocity and gas velocity dispersion. We revisit the BTFR adding galaxies from other studies. We find a previously unknown trend between the deviation from the BTFR and the exponential disc scale length valid for dwarf galaxies with circular speeds ≲ 45 km s−1, with our UDGs being at the extreme end. Based on our findings, we suggest that the high baryon fractions of our UDGs may originate due to the fact that they have experienced weak stellar feedback, likely due to their low star formation rate surface densities, and as a result they did not eject significant amounts of gas out of their discs. At the same time, we find indications that our UDGs may have higher-than-average stellar specific angular momentum, which can explain their large optical scale lengths.more » « less
-
Abstract In the local universe, OH megamasers (OHMs) are detected almost exclusively in infrared-luminous galaxies, with a prevalence that increases with IR luminosity, suggesting that they trace gas-rich galaxy mergers. Given the proximity of the rest frequencies of OH and the hyperfine transition of neutral atomic hydrogen (Hi), radio surveys to probe the cosmic evolution of Hiin galaxies also offer exciting prospects for exploiting OHMs to probe the cosmic history of gas-rich mergers. Using observations for the Looking At the Distant Universe with the MeerKAT Array (LADUMA) deep Hisurvey, we report the first untargeted detection of an OHM atz> 0.5, LADUMA J033046.20−275518.1 (nicknamed “Nkalakatha”). The host system, WISEA J033046.26−275518.3, is an infrared-luminous radio galaxy whose optical redshiftz≈ 0.52 confirms the MeerKAT emission-line detection as OH at a redshiftzOH= 0.5225 ± 0.0001 rather than Hiat lower redshift. The detected spectral line has 18.4σpeak significance, a width of 459 ± 59 km s−1, and an integrated luminosity of (6.31 ± 0.18 [statistical] ± 0.31 [systematic]) × 103L⊙, placing it among the most luminous OHMs known. The galaxy’s far-infrared luminosityLFIR= (1.576 ±0.013) × 1012L⊙marks it as an ultraluminous infrared galaxy; its ratio of OH and infrared luminosities is similar to those for lower-redshift OHMs. A comparison between optical and OH redshifts offers a slight indication of an OH outflow. This detection represents the first step toward a systematic exploitation of OHMs as a tracer of galaxy growth at high redshifts.more » « less
An official website of the United States government
